Non-Axisymmetric Time-Dependent Creep Analysis in a Thick-Walled Cylinder Due to the Thermo-mechanical loading

Authors

  • A Loghman Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
  • M Moradi Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
Abstract:

In this study, the non-linear creep behaviour of a thick-walled cylinder made of stainless steel 316 is investigated using a semi-analytical method. The thick-walled cylinder is under a uniform internal pressure and a non-axisymmetric thermal field as a function of the radial and circumferential coordinates. For the high temperature and stress levels, creep phenomena play a major role in stress redistributions across the cylinder thickness. The Bailey-Norton creep constitutive equation is used to model the uniaxial creep behaviour of the material. Creep strain increments are accumulated incrementally during the life of the vessel. Creep strain increments are related to the current stresses and the material uniaxial creep model by the well-known Prandtl-Reuss relations. Considering the mentioned non-axisymmetric boundary conditions, the heat conduction equation and the Navier partial differential equations has been solved using the separation of variables and the complex Fourier series methods. The corresponding displacement, strain and stress functions are obtained. Considering the non-axisymmetric loadings, the distribution of the radial, circumferential and shear stresses are studied. Furthermore, the effects of internal pressure and external temperature distribution on the effective stress history are investigated. It has been found that the non-axisymmetric thermal loading has a significant effect on stress redistributions.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Mechanical Stresses in a Linear Plastic FGM Hollow Cylinder Due to Non-Axisymmetric Loads

In this paper, an analytical solution for computing the linear plastic stresses and critical pressure in a FGM hollow cylinder under the internal pressure due to non-Axisymmetric Loads is developed. It has been assumed that the modulus of elasticity was varying through thickness of the FGM material according to a power law relationship. The Poisson's ratio was considered constant throughout the...

full text

Time-Dependent Thermo-Electro-Mechanical Creep Behavior of Radially Polarized FGPM Rotating Cylinder

Time-dependent creep analysis is crucial for the performance and reliability of piezoactuators used for high-precision positioning and load-bearing applications. In this study history of stresses, deformations and electric potential of hollow rotating cylinders made of functionally graded piezoelectric material (FGPM), e.g., PZT_7A have been investigated using Mendelson’s method of successive e...

full text

Mechanical and Thermal Stresses in a FGPM Hollow Cylinder Due to Non-Axisymmetric Loads

In this paper, the general solution of steady-state two-dimensional non-axisymmetric mechanical and thermal stresses and mechanical displacements of a hollow thick cylinder made of fluid-saturated functionally graded porous material (FGPM) is presented. The general form of thermal and mechanical boundary conditions is considered on the inside and outside surfaces. A direct method is used to sol...

full text

Stress Redistribution Analysis of Piezomagnetic Rotating Thick-Walled Cylinder with Temperature-and Moisture-Dependent Material Properties

In this article, the problem of time-dependent stress redistribution of a piezomagnetic rotating thick-walled cylinder under an axisymmetric hygro-thermo-magneto-electro-mechanical loading is analyzed analytically for the condition of plane strain. Using the constitutive equations, a differential equation is found in which there are creep strains. Primarily, eliminating creep strains, an analyt...

full text

Electro-Thermo-Mechanical Response of Thick-Walled Piezoelectric Cylinder Reinforced by BNNTs

Electro-thermo-elastic stress analysis of piezoelectric polymeric thick-walled cylinder reinforced by boronnitride nanotubes (BNNTs) subjected to electro-thermo-mechanical fields is presented in this article. The electro-thermo-elastic properties of piezoelectric fiber reinforced composite (PEFRC) was studied by a modified XY micromechanical model capable of exhibiting full coupling relati...

full text

mechanical stresses in a linear plastic fgm hollow cylinder due to non-axisymmetric loads

in this paper, an analytical solution for computing the linear plastic stresses and critical pressure in a fgm hollow cylinder under the internal pressure due to non-axisymmetric loads is developed. it has been assumed that the modulus of elasticity was varying through thickness of the fgm material according to a power law relationship. the poisson's ratio was considered constant throughou...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 10  issue 4

pages  845- 863

publication date 2018-12-30

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023